National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Chaotic Motion around Black Holes
Suková, Petra ; Semerák, Oldřich (advisor) ; Šubr, Ladislav (referee) ; Loukes-Gerakopoulos, Georgios (referee)
As a non-linear theory of space-time, general relativity deals with interesting dynamical systems which can be expected more prone to chaos than their Newtonian counter-parts. In this thesis, we study the dynamics of time- like geodesics in the static and axisymmetric field of a Schwarzschild black hole surrounded, in a concentric way, by a massive thin disc or ring. We reveal the rise (and/or decline) of geodesic chaos in dependence on parameters of the sys- tem (the disc/ring mass and position and the test-particle energy and angular momentum), (i) on Poincaré sections, (ii) on time series of position and their power spectra, (iii) by applying two simple yet powerful recurrence methods, and (iv) by computing Lyapunov exponents and two other related quantifiers of or- bital divergence. We mainly focus on "sticky" orbits whose different parts show different degrees of chaoticity and which offer the best possibility to test and compare different methods. We also add a treatment of classical but dissipative system, namely the evolution of a class of mechanical oscillators described by non-standard constitutive relations.
Geodesic chaos in a perturbed Schwarzschild field
Polcar, Lukáš ; Semerák, Oldřich (advisor) ; Kopáček, Ondřej (referee)
We study the dynamics of time-like geodesics in the field of black holes perturbed by a circular ring or disc, restricting to static and axisymmetric class of space-times. Two analytical methods are tested which do not require solving the equations of motion: (i) the so-called geometric criterion of chaos based on eigenvalues of the Riemann tensor, and (ii) the method of Melnikov which detects the chaotic layer arising by break-up of a homoclinic orbit. Predictions of both methods are compared with numerical results in order to learn how accurate and reliable they are.
Chaotic Motion around Black Holes
Suková, Petra
As a non-linear theory of space-time, general relativity deals with interesting dynamical systems which can be expected more prone to chaos than their Newtonian counter-parts. In this thesis, we study the dynamics of time- like geodesics in the static and axisymmetric field of a Schwarzschild black hole surrounded, in a concentric way, by a massive thin disc or ring. We reveal the rise (and/or decline) of geodesic chaos in dependence on parameters of the sys- tem (the disc/ring mass and position and the test-particle energy and angular momentum), (i) on Poincaré sections, (ii) on time series of position and their power spectra, (iii) by applying two simple yet powerful recurrence methods, and (iv) by computing Lyapunov exponents and two other related quantifiers of or- bital divergence. We mainly focus on "sticky" orbits whose different parts show different degrees of chaoticity and which offer the best possibility to test and compare different methods. We also add a treatment of classical but dissipative system, namely the evolution of a class of mechanical oscillators described by non-standard constitutive relations.
Geodesic chaos in a perturbed Schwarzschild field
Polcar, Lukáš ; Semerák, Oldřich (advisor) ; Kopáček, Ondřej (referee)
We study the dynamics of time-like geodesics in the field of black holes perturbed by a circular ring or disc, restricting to static and axisymmetric class of space-times. Two analytical methods are tested which do not require solving the equations of motion: (i) the so-called geometric criterion of chaos based on eigenvalues of the Riemann tensor, and (ii) the method of Melnikov which detects the chaotic layer arising by break-up of a homoclinic orbit. Predictions of both methods are compared with numerical results in order to learn how accurate and reliable they are.
Chaotic motion in Johannsen-Psaltis spacetime
Zelenka, Ondřej ; Loukes Gerakopoulos, Georgios (advisor) ; Kopáček, Ondřej (referee)
The Johannsen-Psaltis spacetime is a perturbation of the Kerr spacetime de- signed to avoid pathologies like naked singularities and closed timelike curves. This spacetime depends not only on the mass and the spin of the central object, but also on extra parameters, making the spacetime deviate from Kerr; in this work we consider only the lowest order physically meaningful extra parameter. In this thesis we summarize the basics of the theory of regular and chaotic dynamics and we use numerical examples to show that geodesic motion in this spacetime can exhibit chaotic behavior. We study the corresponding phase space by using Poincaré sections and rotation numbers to show chaotic behavior both directly and indirectly (e.g. Birkhoff chains), and we use Lyapunov exponents to directly estimate the sensitivity to initial conditions for chaotic orbits. 1
Chaotic Motion around Black Holes
Suková, Petra
As a non-linear theory of space-time, general relativity deals with interesting dynamical systems which can be expected more prone to chaos than their Newtonian counter-parts. In this thesis, we study the dynamics of time- like geodesics in the static and axisymmetric field of a Schwarzschild black hole surrounded, in a concentric way, by a massive thin disc or ring. We reveal the rise (and/or decline) of geodesic chaos in dependence on parameters of the sys- tem (the disc/ring mass and position and the test-particle energy and angular momentum), (i) on Poincaré sections, (ii) on time series of position and their power spectra, (iii) by applying two simple yet powerful recurrence methods, and (iv) by computing Lyapunov exponents and two other related quantifiers of or- bital divergence. We mainly focus on "sticky" orbits whose different parts show different degrees of chaoticity and which offer the best possibility to test and compare different methods. We also add a treatment of classical but dissipative system, namely the evolution of a class of mechanical oscillators described by non-standard constitutive relations.
Chaotic Motion around Black Holes
Suková, Petra ; Semerák, Oldřich (advisor) ; Šubr, Ladislav (referee) ; Loukes-Gerakopoulos, Georgios (referee)
As a non-linear theory of space-time, general relativity deals with interesting dynamical systems which can be expected more prone to chaos than their Newtonian counter-parts. In this thesis, we study the dynamics of time- like geodesics in the static and axisymmetric field of a Schwarzschild black hole surrounded, in a concentric way, by a massive thin disc or ring. We reveal the rise (and/or decline) of geodesic chaos in dependence on parameters of the sys- tem (the disc/ring mass and position and the test-particle energy and angular momentum), (i) on Poincaré sections, (ii) on time series of position and their power spectra, (iii) by applying two simple yet powerful recurrence methods, and (iv) by computing Lyapunov exponents and two other related quantifiers of or- bital divergence. We mainly focus on "sticky" orbits whose different parts show different degrees of chaoticity and which offer the best possibility to test and compare different methods. We also add a treatment of classical but dissipative system, namely the evolution of a class of mechanical oscillators described by non-standard constitutive relations.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.